Poincaré inequalities and Neumann problems for the variable exponent setting
نویسندگان
چکیده
<abstract><p>In an earlier paper, Cruz-Uribe, Rodney and Rosta proved equivalence between weighted Poincaré inequalities the existence of weak solutions to a family Neumann problems related degenerate $ p $-Laplacian. Here we prove similar in variable exponent spaces {p(\cdot)} $-Laplacian, non-linear elliptic equation with nonstandard growth conditions.</p></abstract>
منابع مشابه
Some functional inequalities in variable exponent spaces with a more generalization of uniform continuity condition
Some functional inequalities in variable exponent Lebesgue spaces are presented. The bi-weighted modular inequality with variable exponent $p(.)$ for the Hardy operator restricted to non- increasing function which is$$int_0^infty (frac{1}{x}int_0^x f(t)dt)^{p(x)}v(x)dxleqCint_0^infty f(x)^{p(x)}u(x)dx,$$ is studied. We show that the exponent $p(.)$ for which these modular ine...
متن کاملOn nonlinear evolution variational inequalities involving variable exponent
In this paper, we discuss a class of quasilinear evolution variational inequalities with variable exponent growth conditions in a generalized Sobolev space. We obtain the existence of weak solutions by means of penalty method. Moreover, we study the extinction properties of weak solutions to parabolic inequalities and provide a sufficient condition that makes the weak solutions vanish in a fini...
متن کاملStrong convergence for variational inequalities and equilibrium problems and representations
We introduce an implicit method for nding a common element of the set of solutions of systems of equilibrium problems and the set of common xed points of a sequence of nonexpansive mappings and a representation of nonexpansive mappings. Then we prove the strong convergence of the proposed implicit schemes to the unique solution of a variational inequality, which is the optimality condition for ...
متن کاملStructural stability for variable exponent elliptic problems. II. The p(u)-laplacian and coupled problems
We study well-posedness for elliptic problems under the form b(u)− div a(x, u,∇u) = f, where a satisfies the classical Leray-Lions assumptions with an exponent p that may depend both on the space variable x and on the unknown solution u. A prototype case is the equation u− div ( | ∇u| ∇u ) = f . We have to assume that infx∈Ω, z∈R p(x, z) is greater than the space dimensionN . Then, under mild r...
متن کاملOn Friedrichs – Poincaré - type inequalities ✩
Friedrichsand Poincaré-type inequalities are important and widely used in the area of partial differential equations and numerical analysis. Most of their proofs appearing in references are the argument of reduction to absurdity. In this paper, we give direct proofs of Friedrichs-type inequalities in H 1(Ω) and Poincaré-type inequalities in some subspaces of W1,p(Ω). The dependencies of the ine...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics in engineering
سال: 2021
ISSN: ['2640-3501']
DOI: https://doi.org/10.3934/mine.2022036